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cloaddition, have been trapped by intervention with external 
dipolarophiles,7 we attempted such trapping experiments in 
the hope of providing unequivocal proof for the existence of the 
postulated 1,4 dipole 4. On heating of dioxetane 3a in CDCb 
in the presence of dipolarophiles such as hexafluoroacetone and 
adamantanone, only rearrangement and cleavage products 
could be detected. 

Huisgen8 has demonstrated that alcohols serve as efficient 
dipolarophilic trapping agents in [2 + 2] cycloaddition. 
Trapping experiment with such protic nucleophiles as ROH 
was especially encouraged since the formation of a-methoxy 
peracids in the singlet oxygenation of ketenes in the presence 
of methanol was rationalized in terms of trapping of dipolar 
intermediates by the MeOH.9 However, in view of the hy-
drolytic lability of the trimethylsilyl derivatives of 3, it was 
necessary to prepare the more stable, rerr-butyldimethyl-
silyl-l,2-dioxetane 3d for this purpose.6 Already in benzene 
as solvent, 3d rearranged into the corresponding a-silylperoxy 
ester 2 and only traces of cleavage product (?-BuCHO) could 
be detected by VPC. Moreover, the corresponding a-silyl­
peroxy ester 2d is stable toward methanolysis. Thus, the 
dioxetane 3d is an ideal substrate for dipolar trapping by 
CH3OH because the cleavage reaction is suppressed and the 
rearrangement product 2d survives CH3OH. 

In methanol 3d affords exclusively the rearrangement 
product 2d already at room temperature. Had dipolar trapping 
by CH3OH taken place, the expected ortho ester should have 
either survived or should have been methanolized into a-hy-
droperoxy ester. Apparently the 1,4-dipolar intermediates 4 
must undergo silatropic shift faster than being trapped by 
CH3OH. Not always is it possible to trap such 1,4 dipoles by 
alcohols. For example, in the [2 + 2] cycloaddition of TCNE 
with tetramethoxyethylene, instead of the expected ortho ester, 
only cyclobutane was formed in the presence of alcohols.7 

Whether the postulated 1,4 dipole 4 is also the intermediate 
in the singlet oxygenation of the ketene acetal 1 (Scheme I) 
is of obvious mechanistic relevance. Singlet oxygenation of the 
te/7-butyldimethylsilyl ketene acetal Id in methanol gave only 
the rearrangement product 2d. Of course, any dioxetane 3d 
that may have been formed would have rearranged into 2d in 
CH3OH, as confirmed in the attempted trapping experiments. 
From our preliminary data we are tempted to suggest that the 
same 1,4-dipolar 4 intermediate intervenes in the singlet oxy­
genation of the ketene acetal 1 and the thermal rearrangement 
of the 1,2-dioxetane 3. However, further experimentation is 
in progress to substantiate this mechanistic claim. 
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Half-Sandwich Cyclooctatetraenethorium Compounds 

Sir: 

Bis(??8-cyclooctatetraene)actinide(IV) compounds have 
been known for over a decade1 and are now known for all of the 
lower actinides.2 We now report the first monocycloocta-
tetraenethorium dichloride and bisborohydride. During re­
action of potassium «-butylcyclooctatrienediide (K2BUCOT) 
with thorium tetrachloride we observed the presence of a NMR 
signal at 5 6.6 ppm not associated with either the thorocene3 

or K2BuCOT, and therefore attributed to (BuCOT)ThCl2 

( lb) . From the reaction of thorocene (di-7T-cyclooctatetra-
enethorium) and ThCU in THF we isolated a microcrystalline 
white nonvolatile compound that gave a satisfactory analysis 
for CgHgThCl2^C4H8O.4 X-ray crystal structure determi­
nation showed the compound to have a planar C8 ring coor­
dinated at the center to a thorium atom that was also coordi­
nated to two chlorines and the oxygens of two tetrahydrofu-
rans.5 

(C 8Hg) 2Th+ ThCl4-
THF 

-^C 8 H 8 ThCl 2 

la 

Related substituted COT compounds are also best prepared 
by refluxing the appropriate thorocene3 with excess ThCU in 
THF or DME until the yellow color of the thorocene disap­
pears. The w-butylcyclooctatetraene and 1,3,5,7-tetrameth-
ylcyclooctatetraene compounds ( lb and Ic, respectively), 
prepared in this way, are characterized by the NMR spectra 
summarized in Table I. The 13C NMR spectrum for lb shows 
the five resonances of the substituted Cg ring and the four 
resonances of the butyl group. The mono-COT-ThCl2 deriv­
atives can also be prepared by reaction of the thorocenes with 
dry hydrogen chloride.6 

Based on the volatility of actinide borohydride compounds,7 
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Table I. Spectra of Mono-COT Thorium Compounds 

compound spectrum 
1H NMR, 5 (ppm from Me4Si) 

la C8H8ThCl2 6.79 (s, ring)a-b 

6.6 (s, ring)f 

lb W-C4H9C8H7ThCl2 6.6 (ring)'' 
3.1, 1.0(Bu) 

Ic 1,3,4,7-Me4C8H4ThCl2 6.5 (ring)' 
3.1 (Me) 

2a C8H8Th(BH4)2 6.69 (s, 8 H, ring), 3.11 (q, J = 
85 Hz, 8 H, BH4), 3.34,0.90 
(br, 8 H, THF)" 

13C NMR, 5 (ppm from Me4Si) 
lb 116.5,104.1,103.1,102.7,101.2 

(ring), 49.5, 38.6, 22.8, 14.5 
(Bu)' 

IR(Nujol), cm"1 

2a 2482 (s) (B-H, terminal), 2282 
(w), 2220 (s), (B-H, 

bridging), 
2150 (m), 1180 (s), 1163 (s), 
722 (sh), 714(S)(COT) 

a InC6D6. * Also showed resonances for THF, 3.69 (t), 13.6(m); 
areas for the three resonances are 1:1:1, consistent with 
C8H8ThCl2-2THF. c In THF-^8. 

we hoped that replacement of chloride by borohydride would 
result in more volatile complexes. Also of interest is the nature 
of the bonding of the borohydride groups to the metal center; 
both tridentate and bidentate bonding to the BH4 groups are 
known for actinide compounds.8 The preparation of 
C8H8Th(BH4)2 (2a) and n-C4H9C8H7Th(BH4)2 (2b) has 
been achieved by several routes. Refluxing an equimolar 
mixture of Th(BH4)4(THF)2

9 and di-w-butylthorocene3 in 
T H F gave 2b in 67% yield. Because of the low solubility of 
thorocene, 2a is more easily prepared by the reaction of equi­
molar amounts of Th(BH4)4(THF)2 and K2COT in THF at 
room temperature. We also prepared 2a by the sequence 

THF 
ThCl4 + 2LiBH4 *"ThCl 2 (BH 4 ) 2 " 

K2COT 
- -J-C8H8Th(BH4);, 

THF 
2a 

This route is made more complicated, however, by the necessity 
to remove the LiCl also formed. 

2a and 2b are white microcrystalline products soluble in 
T H F and benzene but not volatile. Satisfactory combustion 
analyses were not obtained,10 but the compounds were well 
characterized by NMR and IR spectra (Table I). The 1H 
NMR spectrum of 2a in C6D6 shows two molecules of coor­
dinated THF in addition to the COT and two equivalent BH4 

groups. The quartet from the borohydride protons is similar 
to that in ( C s H s ^ T h B ^ 8 " and indicates fluxional behavior 
among these protons. At —80 0 C the quartet collapses to a 
broad singlet at 8 3.0 and, as noted by Marks and Shimp,11 

probably indicates a temperature-dependent loss of B-H 
coupling rather than a slowing of the fluxional process. The 
IR spectrum is in accord with tridentate binding to borohy­
dride. The 2500-2100-Cm-1 region is similar to that for 
Th[N(SiMe3)2]3BH4 for which tridentate geometry has been 
established by crystal structure determination.12 The strong 
band at ~715 cm - 1 (15 cm - 1 higher than a band in thorocene) 
appears to be characteristic of the mono-ring or "half-sand­
wich" structure. 

All of these compounds are air and moisture sensitive. The 
further chemistry of these compounds is being studied. 
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Olefin Epoxidation by an Intermediate Formed in 
the Metal Ion Catalyzed Oxygenation of Azibenzil 

Sir: 

Many monooxygenase-catalyzed reactions involve a species 
which transfers an oxygen atom to the substrate. One model 
for this species is the "oxenoid" intermediate.1 Much attention 
has been devoted to the structure and reactivity of carbonyl 
oxides as model oxenoids, which are proposed to be formed as 
intermediates in ozonation of alkenes,3 alkynes,4 and ketenes.5 

Intermediates in the photooxygenation of diazo compounds6 

and singlet oxygen oxygenation of diazo compounds and ylides7 

are probably similar in structure and can also transfer oxygen 
to alkanes,8 alkenes,9 sulfides,10 and aromatic substrates." We 
now report that azibenzil reacts readily with oxygen in the 
presence of metal ion catalysts to give an intermediate which 
can transfer an oxygen atom to olefins to give epoxides under 
very mild conditions. 

PhIC _ C P h + \ _ / <vmQAcS p h C _ c p h + ^ ^ 
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